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1 Abstract
�e Safe Blues project aims to provide real-time caseload predictions during epidemics,

bypassing the lag induced by disease incubation. �is is accomplished by correlating

the transmission of biological diseases with the transmission of virtual safe virus-like

tokens that spread between participating smartphones. An experiment at the University

of Aukland’s City Campus will test the e�cacy of this framework; however, the range

of strand parameters needed to produce a diverse spectrum of epidemic trajectories

is unknown. Here, with the goal of understanding the roles of important strand

parameters, we develop a simulation that roughly models the planned experiment.

�is simulation is used to recommend suitable ranges of strand parameters that might

achieve the desired diversity in epidemic trajectories.

2 Introduction
�e recent COVID-19 pandemic has highlighted our global vulnerability to diseases,

which are able to spread rapidly both within and between densely populated areas. �e

response from many governments has been to enact various public health measures—

for example, mandatory mask wearing, social distancing, or travel restrictions—in an

e�ort to reduce caseloads and fatalities. Consequently, because each of these policies

carry di�erent social and economic costs, governments must balance the public health

impacts of COVID-19 against the broader societal impacts of taking action [24].

Surely, to e�ectively compare di�erent public health measures, we must understand

how they a�ect the future progression of an epidemic. �is is facilitated by model-

ing tools within the �eld of mathematical epidemiology, which applies quantitative

techniques to study health and disease at a population level [20]. For example, many
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specialised models have been designed and used for predicting the course of COVID-19

outbreaks in di�erent countries (see [2], [18], and [19] for instance). A disadvantage of

these standard epidemiological models is their reliance on historical caseload statistics,

which can o�en be lagging due to a disease’s incubation period. Speci�cally, because

some diseases do not produce symptoms until their incubation period has elapsed,

infected individuals are initially unaware of the infection and are unlikely to be diag-

nosed until a�er they become symptomatic. Khalili et al. [15] estimate that COVID-19

has an average time between infection and symptom presentation of 5.68 days (99%

CI: 4.78, 6.59) and an average time between symptom presentation and �rst clinical

visit of 4.92 days (95% CI: 3.95, 5.90). Overall, since the time of a COVID-19 patient’s

�rst clinical visit is an average of 10.60 days behind their time of infection, both the

caseload statistics and the predictions of mathematical models are almost certainly

lagging.

�e Safe Blues project aims to overcome these lagging statistics and, in turn, serve

as a method for the real-time measurement, prediction, and control of disease outbreaks

(open-source code is available in [5]). Dandekar et al. [4] propose a framework in which

the simulated spread of multiple safe virtual viruses (called Safe Blues strands) is used

to predict the status of real-world epidemics (see also [6]). A strand spreads between

nearby smartphones via Bluetooth communications and its dynamics (transmissibility,

incubation duration, and infection duration) are speci�ed by a collection of parameters.

Note that, since proximity is also a central factor in the spread of biological pathogens,

their epidemiological trajectories should be correlated with those of Safe Blues strands

[4]. An ensemble of strands with di�erent parameters, which do not necessarily

resemble biological diseases, are simulated simultaneously with the goal of capturing a

variety of observable trajectories. �en, a deep neural network is trained on historical

data to predict the state of a real-world epidemic using the states of the Safe Blues

strands. �is means that, because the state of a Safe Blues strand can be inspected

without lag at any time, a current prediction of the real-world epidemic can be obtained

by feeding the latest strand information into this deep neural network. Hence, the

Safe Blues framework can give up-to-date estimates of a disease’s caseload, which can

be used to more rapidly evaluate the e�cacy of various public health measures [4].

Although its underlying mechanism of Bluetooth communications between smart-

phones is shared with contact-tracing applications for COVID-19 (for example, the

Singaporean government’s [3] BlueTrace protocol implemented in the OpenTrace

application), the Safe Blues project di�ers in both its purpose and privacy footprint.

Given that the purpose of OpenTrace is to assist in contact tracing, it must record

a user’s interactions alongside other personally identi�able information. Although

its designers a�empt to mitigate privacy concerns by adopting a model based on

“decentralised proximity data collection and centralised contact tracing capability”, in-

formation must still be transferred to public health authorities a�er a positive diagnosis

of COVID-19 [3]. �e Safe Blues project, in contrast, aims to simulate virtual epidemics

in a decentralised manner, meaning that the collection of interactions or signi�cant

personally identi�able information is not necessary [4]. �us, while Safe Blues is

not intended as a replacement for smartphone-based contact tracing applications, its

di�erences allow it to have a comparatively smaller privacy footprint.

A physical experiment to explore the predictive ability of the Safe Blues framework
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Figure 1: A screenshot of the Android application used within the Safe Blues experi-

ment.

is proposed in [4]. �is experiment will be conducted on the University of Aukland’s

City Campus from May 1, 2021 to November 3, 2021. It involves using smartphones

to simulate both red strands, which are stand-ins for biological diseases, and blue

strands, which are used for prediction. Note that in Figure 1 a participant ID is used

to identify individuals to ensure that only a small amount of personally identi�able

information is collected—in fact, only an email is required. A 10-day forecast of the

red strands—whose caseloads are arti�cially delayed to mimic the lag observed in

real-world epidemics—is estimated by feeding the blue strands’ states into the deep

neural network model. �e predictions of this model are compared against those of

traditional methodologies to assess its relative e�cacy [4].

Previously, others have conducted similar epidemiological experiments, including

for the BBC documentary “Contagion! �e BBC Four Pandemic” [16] and for the

FluPhone project [25]. �e Contagion experiment simulated a disease outbreak within

the United Kingdom by having a smartphone application collect participants’ physical

locations (GPS) and close contacts (self-reported) throughout a 24-hour period [16].

Similarly, the FluPhone experiment used participants’ smartphones to collect their

locations (GPS), close contacts (Bluetooth), and in�uenza-like symptoms (self-reported)

[25]. Unlike these previous experiments, the Safe Blues methodology does not need to

record participants’ locations or interactions because it simulates transmission in a

decentralised manner [4].

Although there is a wide range of possible strand parameter values that could

be used within the experiment, there is upper bound on the number of strands that
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can be simulated. So, to maximise the model’s predictive ability subject to limited

strand capacity, it is desirable to have a good understanding of suitable parameter

ranges within which a diversity of epidemic trajectories may be observed. A strand

that is too weak will be extinguished quickly due to its inability to maintain su�cient

transmission. Similarly, a strand that is too strong will also be extinguished quickly

due to it rapidly exhausting the susceptible population. We want to �nd a “Goldilocks

range” so that the strand parameters are neither too weak or too strong. �is project

aims to develop a simulation tool that approximately describes the spread of these

virtual viruses on the University of Auckland’s City Campus. �en, we will use this

tool to recommend potential parameter ranges depending on the experiment’s initial

number of participants. Of course, since this simulation is unlikely to perfectly re�ect

the dynamics of the real-world experiment, these recommendations serve only as an

initial “best guess’ for the use during its calibration phase.

Moreover, the goal of this project has also been to support the Safe Blues experi-

ment more broadly, including working with both the front-end and back-end systems.

Although this report focuses on discussing the simulation and early experimental

results, some contributions have also been made to the Safe Blues Android application

(see Figure 1), the front-end participant interface, and (more recently) the collection

and analysis of early experimental results.

3 Model Description
Here, we will brie�y describe the model used to simulate the spread of Safe Blues

strands within the University of Aukland’s City Campus. �is simulation is based on

the standard compartmental models used within mathematical epidemiology, speci�-

cally the SEIR di�erential equation model (see, for instance, [20, §5.1]). �e population

is divided into four distinct compartments—susceptible, exposed (or incubating), in-

fected (or infectious), and recovered—and an epidemic evolves by moving individuals

between these compartments. Unlike an agent-based simulation, which operates on

an individual level, a compartmental simulation operates on a population level by

tracking only the number of individuals belonging to each compartment.

First, to give a brief description of the basic deterministic SEIR model, suppose ( (C),
� (C), � (C), and '(C) give the number of susceptible, exposed, infected, and recovered

individuals at the time point C ∈ [0,∞). �en, this model describes the progression of

an epidemic using the dynamics

( ′(C) = −V( (C)� (C),
� ′(C) = V( (C)� (C) − [� (C),
� ′(C) = [� (C) − U� (C),
'′(C) = U� (C),

(1)

for all C ∈ [0,∞). Here, U is the infected-to-recovered transition rate, [ is the exposed-

to-infected transition rate, and V is the transmission rate [20]. Note that the V( (C)� (C)
term in (1) appeals to the law of mass action, which states that the number new
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infections is proportional to the number of interactions between susceptible and

infected persons [20, §3.2].

We will forego these usual deterministic dynamics and, inspired by Barle�’s general

stochastic epidemic model [1], instead describe movement and infection as random

processes. Although these stochastic epidemics are usually more computationally

expensive to simulate, they are sometimes able to be�er capture the diversity of

trajectories that may be observed.

Mathematically, we can describe a Safe Blues strand via a collection of parameters

(c, f, d, `�, ^�, `� , ^� ) where c ∈ [0, 1] is its seeding probability, f ∈ R+ (min
−1

) is its

infection strength, d ∈ R+ (m) is its infection radius, `� ∈ R+ (h) is its mean incubation

duration, ^� ∈ R+ is its incubation duration shape, `� ∈ R+ (h) is its mean infection

duration, and ^� ∈ R+ is its infection duration shape. �e number of participants

that are initially infected by the strand is determined randomly, with each participant

having a c probability of being infected. �en, the future infections must occur due

to close-contacts and have a successful transmission probability depending on the

parameters f and d . Speci�cally, if a susceptible individual is A metres away from an

infected individual for C minutes, then the probability of successful transmission is

? (A, C ;f, d) = 1 − 4−fC
(
1− A∧d

d

)
. (2)

A�er an individual has been exposed to the strand, they remain in the exposed compart-

ment for a gamma distributed duration with mean `� and shape ^� . Similarly, once this

incubation period has elapsed, they remain in the infected compartment for a gamma

distributed duration with mean `� and shape ^� . Note that this parameterisation of a

gamma distribution has probability density function 5 where, for each G ∈ (0,∞), we

set

5 (G ; `, ^) = 1

Γ(^) ( `
^
)^
G^−14

−^G
`

(3)

where ` is the mean parameter, ^ is the shape parameter, and Γ is the gamma function.

Now, having described the properties of a strand, we will explain the simula-

tion’s movement and infection dynamics. �e simulation evolves over a collection of

stages ) = {0, 1, . . . , 840} representing each hour within a �ve week period, match-

ing the duration of the experimental phases. �e state at stage C ∈ ) is a tuple

BC = ((C , �C , �C , 'C ,AC ,YC ) with

• (C being the current number of susceptible individuals,

• �C being the current number of exposed individuals,

• �C being the current number of infected individuals,

• 'C being the current number of recovered individuals,

• AC being a collection of times at which exposed individuals will become infected,

and

• BC being a collection of times at which infected individuals will become recov-

ered.
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Note that the AC and BC components are necessary because a gamma distribution is

not necessarily memoryless, so we cannot always simulate these transitions without

knowing an individual’s initial exposure or infection time. If a population of # ∈ Z+
is used, then the initial state is B0 = ((0, �0, �0, '0,A0,B0) where

(0 = # − �0, �0 = 0, �0 ∼ Bin(#, c), and '0 = 0. (4)

Moreover, we have A0 = ∅ and B0 = {�0,: ∼ Gamma(`� , ^� ) : : = 1, 2, . . . �0}. Next,

�xing a stage C ∈ ) , we will explain the three possible transition types that may occur

between the state BC and BC+1: susceptible to exposed, exposed to infected, and infected

to recovered.

Susceptible to Exposed �e transition from susceptible to exposed is the only

transition type that depends on the simulation’s movement dynamics. Essentially, at

each stage, an individual may be on campus and running the application, on campus

and not running the application, or not on campus. �e stage-dependent probability

of being on campus (or the a�endance probability) is denoted UC ∈ [0, 1] and the

probability of running the application (or the compliance probability) is denoted

V ∈ [0, 1]. Note that the process (UC )C ∈) can be used to capture the periodic nature

of campus a�endance over each day and week. Given that strand transmission can

only occur between the subsets of susceptible and infected individuals who are active

(or both on campus and running the application), we draw the random variables (∗C ∼
Bin((C , UCV) to be the number of active susceptible participants and � ∗C ∼ Bin(�C , UCV) to

be the number of active infected participants. Furthermore, to determine their locations

on campus, we draw the collections of two-dimensional points {-C,: ∼ Dist : : =

1, 2, . . . , (∗C } and {.C,: ∼ Dist : : = 1, 2, . . . , � ∗C }, which contain the coordinates of the

susceptible and infected individuals, respectively. �e distribution Dist is de�ned by a

heatmap representing the approximate distribution of participants on the University of

Auckland’s City Campus (see Figure 2). Note that certain buildings—for example, the

Science Centre, the Engineering Blocks, and the Owen G Glenn Building—are given

greater weights because they are frequented by several cohorts who will be targeted

for enrollment in the experiment.

�e probability that the : th
active susceptible participant is exposed to the strand

during this stage is denoted ?C,: and, because the transmission events are independent,

can be calculated as

?C,: =

� ∗C∑
ℓ=1

©«(−1)ℓ−1

∑
 ⊆{1,...,� ∗C }
| |=ℓ

∏
:′∈ 

?
(
‖-C,: − .C,:′ ‖, 60;f, d

)ª®®®¬ . (5)

�en, for each : = 1, 2, . . . , � ∗C , we de�ne a random variable X(→�
C,:
∼ Ber(?C,: ) indicating

whether the : th
active susceptible participant is exposed. �is allows us to randomly

determine the total number of new exposures as

Δ(→�C =

� ∗C∑
:=1

X(→�
C,:

. (6)
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Figure 2: �e approximate distribution of participants on the University of Aukland’s

City Campus represented as a heatmap from black (weighted zero) to white (weighted

one).

�e setA(→�
C = {�C,: ∼ 60C+Gamma(`�, ^�) : : = 1, 2, . . . ,Δ(→�C } stores the infection

transition times of these newly exposed individuals; that is, �C,: is the time at which

the : th
newly exposed individual becomes infectious and is moved into the infected

compartment.

Exposed to Infected If the simulation’s state at the current stage is already known,

then the number of newly infectious individuals is deterministic since the setAC stores

the previously generated exposed-to-infected transition times. �us, the number of

participants transitioning from the exposed compartment to the infected compartment

is

Δ�→�C =
��{� ≤ C : � ∈ AC

}��. (7)

We retain the remaining exposed-to-infected transition times A�→�
C = {� > C : � ∈

AC } and generate the newly infectious participants’ infected-to-recovered transition

times B�→�C = {�C,: ∼ 60C + Gamma(`� , ^� ) : : = 1, 2, . . . ,Δ�→�C }.

Infected to Recovered �e infected-to-recovered transitions behave almost iden-

tically to the exposed-to-infected transitions. �e number of participants who are

moved from the infected compartment to the recovered compartment at the current

stage is computed by counting the number of elapsed recovery times:

Δ�→'C =
��{� < C : � ∈ BC

}��. (8)

Moreover, the remaining infected-to-recovered transition times are B�→�C = {� > C :

� ∈ BC }.
Finally, a�er computing the number of individuals transitioning between com-

partments, we are able to update the state for the subsequent stage C + 1. �is state
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BC+1 = ((C+1, �C+1, �C+1, 'C+1,AC+1,BC+1) is given by

(C+1 = (C − Δ(→�C ,

�C+1 = �C + Δ(→�C − Δ�→�C ,

�C+1 = �C + Δ�→�C − Δ�→'C ,

'C+1 = 'C + Δ�→'C ,

AC+1 = A(→�
C ∪ A�→�

C , and

BC+1 = B�→�C ∪ B�→�C

(9)

where the elements of AC+1 and BC+1 are relabelled as appropriate. �e simulation

starts at the initial state B0 and, for each stage C ∈ ) , applies this updating process to

determine the subsequent state. �en, we can plot this realisation of the processes

((C )C ∈) , (�C )C ∈) , (�C )C ∈) , and ('C )C ∈C to view the epidemic’s trajectory and assess the

strand’s suitability.

4 Implementation Details
�e previously described epidemic model has been implemented in Julia to take ad-

vantage of the language’s fast development and execution time [8]. A user is able

to run these simulations either through the Julia REPL (a command-line tool) or an

interactive dashboard (see Figure 3). �e interactive dashboard has a variety of con-

trols (see Figure 5) that set the model, strand, and population parameters. Speci�cally,

in addition to the SEIR model discussed previously, the dashboard supports various

other models includng SIR (zero incubation duration), SI (zero incubation duration and

in�nite infection duration), and SEIS (where reinfection may occur). It also allows for

“arti�cial social distancing” that weakens the strand’s infection strength over a speci�ed

time interval. �is is important because the experiment proposed by Dandekar et

al. [4] intends to test how the Safe Blues protocol adapts to changing public health

policies. �en, the dashboard uses these parameters to produce real-time predictions of

the corresponding epidemic trajectories within the campus experiment (see Figure 4).

�is allows the Safe Blues researchers to view how a strand might behave before

introducing it to the experiment’s real-world population.

Here, we will review some of the implementation decisions that were made to im-

prove the simulation’s performance, including optimising the processes of generating

locations, transmi�ing strands, and maintaining the collections AC and BC . Overall,

combined with the naturally fast execution time of Julia, this allowed the dashboard to

operate almost in real-time on small populations of less than 1000, which is certainly

su�cient for the number of expected participants in the experiment (see Table 1 in

Appendix).

First, we will focus on the process of generating the participants’ locations within

the campus. Recall that these locations are drawn from a probability distribution Dist
that is de�ned using a heatmap showing likely areas of congregation (see Figure 2).

Precisely, sampling a single individual’s position (G,~) ∈ R2
occurs in two stages:
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Figure 3: A snapshot of the web-based dashboard that can be used for interacting with

the simulation tool.

Figure 4: A snapshot of the interactive dashboard’s simulation output.

Figure 5: A snapshot of the interactive dashboard’s control panel.

9



(a) generating the position of a pixel’s lower-le� corner from a discrete distribution,

and

(b) generating a position within the pixel uniformly at random.

Given that the campus heatmap may need to be changed in future to be�er re�ect

the population dynamics, the process in (a) must be able handle arbitrary discrete

distributions. �is was initially accomplished using the sample function from the

StatsBase.jl Julia package, which includes basic probability and statistics tools

[11]. Precisely, this function implements a poly-algorithm that, for taking a weighted

sample with replacement, selects from either direct sampling or alias sampling depend-

ing on its arguments. Suppose a weighted selection of: ∈ {1, 2, . . . , =} elements from an

array of length = ∈ Z is needed. �e direct sampling method, which has a (worst-case)

time complexity of O(=:), accomplishes this by iterating through the weights array :

times. Comparatively, a�er the alias method completes an O(= log=) set-up stage, it is

able to generate the weighted sample with time complexity O(:). �e set-up stage cre-

ates a pair of distribution-dependent tables: a probability table ? : {1, . . . , =} → [0, 1]
that maps indices to probabilities and an alias table 0 : {1, . . . , =} → {1, . . . , =} that

maps indices to other indices. �en, to sample from this discrete distribution, we

simply generate 8 ∈ {1, 2, . . . , =} uniformly at random and return the 8th element with

probability ? (8) and the 0(8)th element with probability 1 − ? (8) [17, §3.1.4]. �e

sample method must be called at least once every stage to generate the locations

of the susceptible and infected individuals; however, because it does not reuse the

previously constructed tables, the set-up process is repeated multiple times. We can

improve on this by noting that the underlying distribution of participants does not

change throughout the course of the simulation. So, a�er constructing a probability

table and alias table once, we can reuse these to generate locations without having

repeat the set-up process. Given that an open-source implementation of the alias

method that allows for this reusability does not appear to exist in Julia, the set-up and

sampling functions had to be wri�en from scratch. Note that this implementation

is based on the pseudocode in [17, Algorithm 3.7, Algorithm 3.8] where the set-up

method has time complexity O(=).
Next, note that the calculation in (5) of a susceptible participant’s exposure prob-

ability requires iteration over each active infected individual. If there are < active

susceptible participants and = ∈ Z+ active infected participants, then computing their

exposure probabilities is an O(<=) operation. We cannot expect to improve upon this

time complexity because the law of mass action, which is a fundamental assumption

within epidemic modelling, states that the number of transmission events is propor-

tional to the product<= (see [20, §3.2]). Instead, to slightly improve the execution time

of the simulation, we can reduce the cost of computing the probability that an infected

individual successfully transmits a strand to a susceptible individual. Notice that, in the

right-hand side of (5), the probability ? (‖-C,: −.C,: ‖, 60;f, d) of transmission between

the : th
susceptible participant and : ′th infected participant depends on their distance

‖-C,: − .C,: ‖. �is requires the use of the square root operation. However, when the

distance is greater than the strand’s infection radius, the transmission probability is

always zero and has no further dependence on the participants’ distance. Essentially,
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from the de�nition in (2), we have

?
(
‖-C,: − .C,:′ ‖, 60;f, d

)
=

{
1 − 4−60f

(
1−
‖-C,:−.C,:′ ‖

d

)
, ‖-C,: − .C,:′ ‖ ≤ d,

0, |-C,: − .C,:′ ‖ > d,
(10)

but

?
(
‖-C,: − .C,:′ ‖, 60;f, d

)
=

{
1 − 4−60f

(
1−
‖-C,:−.C,:′ ‖

d

)
, ‖-C,: − .C,:′ ‖2 ≤ d2,

0, ‖-C,: − .C,:′ ‖2 > d2,
(11)

would su�ce. Observe that the conditions in (11) do not actually require the compu-

tation of a square root, so implementing this function instead of (10) will result in

performing fewer square root operations overall. Indeed, making this change results

in a small improvement to the simulations performance.

Lastly, to optimise the performance of the exposed-to-infected and infected-to-

recovered transitions, we need to select the correct data structures for AC and BC .
�ese were initially represented as arrays whose elements were ordered from lowest to

highest. If an ordered array is of length = ∈ Z+, then correctly inserting a new element

takes time O(=), deleting an element takes time O(=), and �nding the minimum

element takes time O(1) (only because the array is ordered) [21, §3.2]. We can improve

upon this performance by using the minimum binary heap implementation from the

DataStructures.jl package [10]. Given a binary heap of size = ∈ Z+, adding a

new element takes time O(log=), deleting an element takes time O(log=), and �nding

the minimum element takes time O(1) [21, §6.1]. So, it is preferable to use a heap data

structure when maintaining the collections AC and BC throughout the simulation.

5 Results
Now, when using the simulation to explore the role of strand parameters within the Safe

Blues experiment, we will focus on a strand’s infection strengthf and infection radius d .

�is narrows the number of varying parameters and, as we shall show, we can capture

a su�ciently diverse range of epidemic trajectories by changing only these parameters.

Speci�cally, we will explore infection strengths in the range f ∈ [0, 0.1] and infection

radii in the range d ∈ [0, 20]. Moreover, throughout our future simulations, we

will assume that the seeding probability is c = 0.1, the mean incubation duration

is `� = 24.0h (or a single day), the incubation duration shape is ^� = 5.0, the mean

infection duration is `� = 168.0h (or a single week), and the infection duration shape

is ^� = 5.0. Note that the number participants enrolled in the Safe Blues experiment,

as of the beginning of its calibration phase on May 1
st

2021, is roughly # = 100. So,

we will focus on modelling epidemics for population sizes # ∈ {100, 200, 500}, which

includes potential for growth during future phases.

How should the “success” of a strand be quanti�ed. We know that an unsuccessful

epidemic would spread to a small portion of the cohort and a successful epidemic

would spread to a large portion of the cohort. �us, we are interested in the number
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of cumulative exposures throughout the simulation’s entire time horizon. �is can be

computed as either

�C + �C + 'C or # − (C (12)

where C = 840. Here, to explore the e�ect of varying a strand’s infection strength and

infection radius on its cumulative exposures, we plot this dependence for strengths

f ∈ {0, 0.005, . . . , 0.1} and radii d ∈ {0.0, 1.0, . . . , 20.0}. �e average total exposures,

a�er repeating 100 simulations of each combination of infection strength and infection

radius, is shown in Figure 6 for # = 100, Figure 7 for # = 200, and Figure 8 for

# = 500. Moreover, for a selected subset of parameters, Table 1 (in Appendix) shows

their average execution time to quantify the performance of the implementation.

6 Discussion
Analysis and Interpretation Next, we want to analyse and understand several of

the prominent features appearing in Figure 6, Figure 7, and Figure 8. Clearly, these

graphs share some similar structural elements, including a plateau of high cumulative

exposures around (f, d) = (0.1, 20.0), a plateau of low cumulative exposures around

(f, d) = (0.0, 0.0), and a transition between these regions. Given that the Safe Blues

framework described in [4] uses a diverse ensemble of strands to predict the caseloads

of biological epidemics, we are mostly interested in this transitional region. If the

parameters within this region are targeted, then we should expect to see strands that

spread with various degrees of success.

Observe that there appears to be a minimum infection radius before any signi�cant

transmission can occur in the simulation results. �is minimum infection radius is

roughly d = 10.0 in Figure 6, d = 5.0 in Figure 7, and d = 2.0 in Figure 8. Why is

this the case? Recall that, from the transmission probability function in (2), the : th

susceptible individual can only be infected by the : ′th infected individual when a close

contact (within d metres) occurs. �us, if P(‖-C,: − .C,:′ ‖ ≤ d) is the probability of a

close contact, then the transmission probability can be rewri�en as

?
(
‖-C,: − .C,:′ ‖, 60;f, d

)
= P

(
‖-C,: − .C,:′ ‖ ≤ d

) (
1 − 4

−f60

(
1−
‖-C,:−.C,:′ ‖

d

) )
. (13)

�e close-contact probability P(‖-C,: − .C,:′ ‖ ≤ d) depends only on d and serves as

an upper bound on the probability of transmission

?
(
‖-C,: − .C,:′ ‖, 60;f, d

)
≤ P

(
‖-C,: − .C,: ‖ ≤ d

)
. (14)

Accordingly, for a su�ciently small infection radius, we should expect the transmission

probability to always be too small to result in a successful epidemic. Note that this

minimum infection radius for successful spread is dependent on the total population

because increasing the density of participants also increases the rate of close con-

tacts, making transmissions more frequent overall. �is explains why the simulated

epidemics fail to spread beyond their initial exposed populations when the strand’s

infection radius is small.
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Figure 6: �e dependence of cumulative exposures on a strand’s infection radius and

infection strength a�er 100 simulations with # = 100.

Figure 7: �e dependence of cumulative exposures on a strand’s infection radius and

infection strength a�er 100 simulations with # = 200.
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Figure 8: �e dependence of cumulative exposures on a strand’s infection radius and

infection strength a�er 100 simulations with # = 500.

A consequence of our previous observation, within the context of the Safe Blues

experiment, is that the strands’ infection radii must be carefully chosen dependent

on the number of enrolled participants. Unfortunately, an added complication is

introduced in the form of range limitations of the underlying Bluetooth technology.

�e original implementation of OpenTrace—the contact tracing project upon which

the Safe Blues application for Android is based—in [3] uses the received signal strength

indicator (RSSI) of Bluetooth to infer distances between interacting smartphones.

Bay et al. [3] note that the range of Bluetooth in indoor environments is 10 metres,

suggesting that the transmission of strands with d > 10.0 might be unreliable or

impossible. So, it is especially important that the Safe Blues experiment has su�ciently

many participants to ensure that the minimum required infection radius for widespread

transmission can be achieved subject to the technological limitations of Bluetooth.

Additionally, another prominent feature in Figure 6, Figure 7, and Figure 8 is

that the steepness of the transitional region increases with the population size. �is

means that, by raising the total number of enrolled participants, we will narrow

the parameter ranges necessary to produce a diversity of epidemic trajectories. A

straightforward explanation for this phenomenon is that, by increasing the density of

the population within the �xed campus dimensions, we increase the expected number

of new infections caused by a single carrier over their infectious period. Note that this

quantity is known as the e�ective reproduction number (o�en denoted as RC ) and, with

the added condition that the surrounding population is completely susceptible, it is

known as the basic reproduction number (o�en denoted as R0). �e basic reproduction

number is a fundamental constant associated with an epidemic as it can o�en be used

14



to predict the degree to which it will spread. Indeed, in many common epidemiological

models, R0 < 1 implies that an epidemic will not occur and R0 > 1 implies that

an epidemic will occur (to some extent) [9]. Kermack and McKendrick [12, 13, 14],

alongside their introduction of the original deterministic SIR epidemiological model,

show an equivalent result phrased in terms of population densities. Precisely, they show

that an infectious disease has a threshold population density where (a) an epidemic

does not occur below this density and (b) an epidemic does occur above this density.

Moreover, they note that the severity of an epidemic increases as the population density

increases. �is threshold result is extended to the stochastic se�ing by Whi�le [23] by

proving that an epidemic does not occur when below the threshold population density

(or R0 < 1) and an epidemic does occur with non-zero probability above the threshold

population density (or R0 > 1). Clearly, these threshold density observations explain

the expanding plateaus in Figure 6, Figure 7, and Figure 8 on which the cumulative

exposures are maximised. Speci�cally, as the population density rises, we are seeing the

expansion of the subset of strands whose threshold densities have been exceeded. �is

steepens the transitional region as the expanding plateau grows towards occupying the

entire parameter space. �e consequence of this observation, within the context of the

Safe Blues experiment, is that larger cohorts demand a more concentrated distribution

of strand parameters to a�ain the desired diversity.

Now, a�er exploring the structural features of the simulation results, we are

prepared to make parameter recommendations for the Safe Blues experiment. Recall

the three important points from our previous discussion:

(a) there exists a minimum radius for sustained transmission, which decreases as

population size increases, and

(b) there exists a region of transitional parameters, which narrows as population

size increases,

We apply these observations to conclude that f ∈ [0.0, 0.05] or d ∈ [10.0, 20.0] is the

optimal parameter range for # = 100, f ∈ [0.0, 0.05] or d ∈ [5.0, 15.0] is the optimal

parameter range for # = 200, and f ∈ [0.0, 0.04] or d ∈ [2.0, 12.0] for # = 500. In

all three cases, it is important that the infection radius is greater than the observed

minimum infection radius for su�cient transmission: 10m for# = 100, 5m for# = 200,

and 2m for # = 500. Evidently, given that [3] states 10 metres is the e�ective Bluetooth

range, achieving the greatest levels of cumulative exposures within these ranges might

not be possible.

Errors and Improvements Finally, it is important to discuss potential errors within

the simulation and the e�ects of these errors on our recommendations. We cannot ex-

pect this simulation to be a perfect predictor of reality due to the assumptions that have

been made. �ese assumptions can be categorised into two groups: those that address

transmission dynamics and those that address movement dynamics. �e remaining

elements of the simulation—for example, the exposed-to-infected and infected-to-

recovered transitions—do not need to be approximated because their counterparts in

the smartphone application could be closely replicated.

15



First, the transmission mechanism implemented in the simulation is not constrained

by the same technological or environmental limitations as the experimental smart-

phone application. We have already identi�ed that limited communication range is an

important factor in the spread of the virtual viruses [3]; this limitation is not modelled

in the simulation where the infection range is unbounded. Additionally, the simulation

does not explicitly model the relationship between obstructions and the transmission

of strands via Bluetooth signals. Recall that the Safe Blues implementation is based on

the OpenTrace application introduced in [3], which uses the received signal strength

indicator (RSSI) to estimate the distance between smartphones. Although this signal

strength decreases with distance, it can also be limited by obstructions common in

indoor environments [7]. Given that the simulation does not di�erentiate between

indoor (or high obstruction) and outdoor (or low obstruction) environments, we should

expect this to contribute as a source of error. We could avoid these errors by explicitly

modelling obstructions and the RSSI process used to compute distance; however, this

would necessarily increase the complexity and execution time of the model.

Second, the movement dynamics are only a rough approximation of individuals’

behaviour on the university campus. �e simulation does not describe a participant’s

day as a continuous process in which they move around campus according to a schedule.

Instead, at every stage, they are randomly placed somewhere on campus according

to a distribution that is intended to re�ect the average participant’s schedule. �is

allows movement to be modelled at a population level and su�ciently captures the

tendency to congregate in certain buildings, but it misses other elements that may

play a role in epidemic growth during the experiment. Speci�cally, since the entire

population is functionally identical, the increased likelihood of strand transmission

within certain se�ings—for examples, lectures, tutorials, or social gatherings—are

ignored. Although this could be improved by using an agent-based model in which

the population was modelled on an individual level, but this would also increase the

simulation’s complexity.

Ultimately, due to the assumptions that have been made throughout the develop-

ment of this simulation, the recommended parameter ranges serve only as a starting

point for the experiment’s calibration phase. �e information collected during this

initial phase will then inform the future choices of parameters during the remaining

experimental phases.

Safe Blues Experiment Now, as of May 21
st

2021, the initial calibration phase of

the Safe Blues experiment has been running for approximately a month. �is has

involved the release of multiple strand batches with di�erent parameters to further

investigate the suitable parameter ranges. A total of �ve batches have been released

labelled from v1.01 to v1.05. Here, we will give a brief overview of the strands released

during the calibration phase; a detailed description of these strands is available at [22].

�e �rst batch (v1.01) contained 162 strands consisting of infection strengths f ∈
{0.06, 0.16, 0.48} and infection radii d ∈ {5, 15, 500}. �e remaining parameters varied

to include strands with no incubation, no recoveries, short infection duration (`� = 120h

or 5 days), or long infection duration (`� = 240h or 10 days). �e simulation was

used to verify that the parameters covered a suitable variety of epidemic trajectories.
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Figure 9: �e trajectory of v1.04 Safe Blues Strand #255 with c = 0.1, f = 0.48, d = 15m,

`� = 12h, ^� = 10000, `� = 240h, and ^� = 3.

Figure 10: �e trajectory of v1.04 Safe Blues Strand #258 with c = 0.1, f = 0.48,

d = 500m, `� = 12h, ^� = 10000, `� = 240h, and ^� = 3.
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Unfortunately, the release of the v1.01 strands revealed a bug in the Safe Blues Android

application. �e random number generator used a �xed seed shared between devices

and, as a consequence, each strand initially infected almost everybody or almost

nobody. �e v1.02 and v1.03 strand releases were addressed at �xing this mistake.

A�er su�ciently many participants had updated to the latest patched application

version, the v1.01 strands were re-released as v1.04. Although only a small amount of

data has been collected, we can already begin to compare some of the initial real-world

trajectories with the simulation’s predictions. Particularly, across the 162 strands, the

strength parameter appears to have insigni�cant in�uence on the transmission rate,

whereas, the radius parameter appears to greatly in�uence transmission. Here, as an

example, the trajectory of Strand #255 (with infection radius d = 15m) and Strand #258

(with infection radius d = 500m) are shown in Figure 9 and Figure 10. �ese strands

share the remaining parameters c = 0.1, f = 0.48, `� = 12h, ^� = 10000, `� = 240h,

and ^� = 3. Note that Strand #258’s infection radius of d = 500m is a stand-in for an

“umlimited” infection range; it is unlikely that Bluetooth communication can exceed

this range (see [3]). Clearly, Strand #255 exhibits very li�le growth and only manages

to infect one additional participant. �is causes its caseload to fall from 14 to 4 and

its cumulative exposures to reach only 15 during the 12-day period. Strand #258,

on the other hand, is able to infect multiple people with its caseload growing from

4 to 35 and its cumulative exposures reaching 43 during the 12-day period. �ese

initial results indicate that there is a “transmissibility slope” between d = 15m and

d = 500m on which the transmissibility of the strands increase. Indeed, this aligns

with the simulation’s results for # = 100 participants in Figure 6; however, the exact

location of this transitional region appears to be di�erent. Although it did not exactly

predict these outcomes, the simulation still serves as a useful tool for interpreting the

experimental results and understanding the underlying dependence of transmissibility

of the parameters.

Recently, the v1.05 strand batches have been released with the goal of further

exploring suitable infection radius values. �ese strands have various infection radii

radii from d ∈ {7.5m, 15m, 30m, 60m, 120m, 500m}. �e remaining parameters are

�xed at c = 0.1, f = 0.16, `� ≈ 0h, ^� = 10000, `� = 960h, and ^� = 10000. �is ensures

that the strands have e�ectively no incubation and no recoveries. Unfortunately, at

the time of writing, these strands have not been circulating within the population for

long enough to clearly identify the epidemics’ trajectories.

7 Conclusion
Here, we sought to develop a simulation of the planned Safe Blues experiment to

understand the roles of strand parameters and their optimal ranges. �e underlying

epidemiological model used in this project was a stochastic compartmental SEIR model,

which was then implemented in Julia as a command-line tool and interactive dashboard.

�is simulation was used to understand the role of the infection strength and infection

radius in determining the cumulative number of exposures. �is served as a starting

point for the experiment’s calibration phase and was used when designing the v1.01

and v1.04 strands. �ese strands have been active for approximately 12 days—at the
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time of writing—and signi�cant transmission was observed for large infection radii

(see Figure 10), but no signi�cant transmission was observed for smaller infection

radii (see Figure 9). Recently, additional strands have been released to more precisely

capture the transition between weak and strong epidemics. Altogether, the simulation

has ful�lled its purpose as a starting point for planning strands that achieve su�ciently

diverse trajectories.
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8 Appendix

Table 1: �e average runtime and average number of cumulative exposures a�er 100

simulations of a variety of strand con�gurations.

Population Strength Radius (m) Runtime (ms) Cumulative Exposures

100 0.01 5 0.20 10.23

100 0.01 10 0.21 13.45

100 0.01 20 0.26 32.89

100 0.05 5 0.20 12.46

100 0.05 10 0.25 25.00

100 0.05 20 0.25 94.29

100 0.10 5 0.21 14.24

100 0.10 10 0.28 42.63

100 0.10 20 0.23 97.45

200 0.01 5 0.29 23.46

200 0.01 10 0.37 35.65

200 0.01 20 0.47 166.62

200 0.05 5 0.33 36.84

200 0.05 10 0.47 148.63

200 0.05 20 0.29 199.39

200 0.10 5 0.38 47.36

200 0.10 10 0.42 175.55

200 0.10 20 0.27 199.68

500 0.01 5 0.79 79.04

500 0.01 10 1.27 318.62

500 0.01 20 0.75 494.54

500 0.05 5 1.25 249.38

500 0.05 10 0.75 492.89

500 0.05 20 0.44 500.00

500 0.10 5 1.20 353.59

500 0.10 10 0.64 497.20

500 0.10 20 0.41 500.00
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