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THE BIGGER PICTURE: Viral spread is a complicated function of multiple elements including
biological properties, preventative measures such as sanitation and masks, the environment, and
the level of physical proximity. It is this last element that governments can control through social-
distancing directives. However, with a pandemic such as COVID-19, the data is always lagging and
biased since the time between a patient being infected with SARS-CoV-2 and being recorded as
positive can be a week or more. Consequently there can be a time lag of the order of several weeks
between the initiation of a regulatory measure and its observed effect. There is thus a pressing
need for real time information on the level of physical proximity while respecting personal privacy.

Safe Blues fills this need, providing real time population-level estimates of the level of physical
proximity and near-future projections of the epidemic. Safe Blues strands are safe virtual ‘virus-
like’ tokens that are spread using cellular devices and Bluetooth. Real time counts of multiple
forms of the tokens are combined with delayed measurements of the actual epidemic. Then using
machine-learning techniques the Safe Blues system creates more accurate projections about the
current and near-future state of the epidemic.

The Safe Blues protocol and machine learning techniques have been developed together with
an experimental minimal viable product, presented as an app on Android devices with a server
back-end. Following initial exploration via simulation experiments, we are now preparing for a
university-wide experiment of Safe Blues.
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Introduction

The COVID-19 pandemic is the most significant global event faced by humanity in the 21st century. In
less than a year, there have been over 30 million confirmed cases, and nearly a million deaths. In trying
to mitigate this virus, economies are crumbling and whole societies are undergoing transformation due
to the new norms dictated by the virus and human response.

In parallel with the race to develop SARS-CoV-2 vaccines, there are many efforts in the scientific
community to understand the spread of the virus through measurements and modelling. Viral spread is
a complicated function of multiple elements including biological properties, preventative measures such
as sanitation and masks, the environment, and very importantly the level of physical proximity. It is this
last element, the level of physical proximity, that governments can control via social-distancing directives
and lockdowns. However, with a pandemic such as COVID-19, the data we have is always lagging and
biased: the time between a patient being infected and being recorded as positive can be one or two
weeks. A consequence is that the typical time between the initiation of a lockdown measure and our
observation of its effect is of the order of several weeks. This delay hinders the ability of epidemiologists,
mathematical biologists, and public-health officials to make inferences about the current situation and
projections about the future trajectory of viral spread. As a consequence, governments struggle to
deliver an effective response to the pandemic.

Biological properties of SARS-CoV-2 have been studied since the start of the outbreak27 and are
being better understood as time progresses. On the other hand, population behavior is changing
rapidly due to unprecedented social distancing regulation and is hard to observe, model, and predict.
As a consequence, achieving tight real time estimates of time-varying parameters such as Reff(t), the
expected number of individuals infected by an infectious person, is a difficult task.23

The effects of this uncertainty are painfully visible in the second waves afflicting multiple countries
that responded “well” with strong social-distancing measures in February-May, 2020. As an illustration,
consider Figure 1 presenting the confirmed daily new cases in the state of Victoria, Australia. The
initial lockdown during April-May managed to suppress COVID-19. However a second outbreak in
July required a further lockdown and the magnitude of the second wave was much more significant
than the first. In managing this crisis, government faces extreme difficulty in determining the optimal
level of social distancing that should be imposed. Such decisions involve guesswork because there is no
immediate feedback on how various levels of social-distancing regulation affect physical proximity and,
in turn, viral spread.

While in general, the Victorian response appears to have suppressed the spread of SARS-CoV-2 in
both waves, the social distancing measures have had huge economic and social costs. The question is
then what can be improved in future outbreaks or waves? A swifter response entailing the imposition
of social-distancing measures might have allowed an earlier easing of those measures with fewer overall
infections and ultimately lower economic and human impact. However, due to a lack of information with
current measurement techniques, such a refined response can not be expected. Essentially, government
does not have real time information of viral spread to input into its decision making process.

To provide more real time information, we propose the use of “Safe Blues”.1,3 Safe Blues uses
Bluetooth signals in a manner similar to existing and emerging contact tracing frameworks such as
Proximity,11 Blue Trace,5 and the Privacy-Preserving Contact Tracing framework developed by Apple
and Google.4 In contrast to these frameworks, Safe Blues does not store information about individuals
and their interactions. Instead, it mimics virus spread via the safe exchange of Bluetooth signals in
a real time privacy-preserving manner. Various Safe Blues virus strands are periodically created and
spread through the (mobile device) population. Aggregated counts for each strand are reported to
a server without recording private information. An analysis of the counts helps to obtain aggregate
estimates of population contact. The result is a real time estimate of the effect of any social distancing
rules that are in place. The effect of other events such as public demonstrations and mass gatherings
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Figure 1: Measured daily new cases of COVID-19 in the Australian state of Victoria, during the first
half of 2020. Both the first wave and the second wave were mitigated via social distancing measures.
Government imposed various social distancing directives, with severity labeled via stage 2 (lightest),
stage 3, and stage 4 (complete lockdown).

is also automatically measured. This information on physical proximity, along with retrospective infor-
mation about actual (not Safe Blues) SARS-CoV-2 case numbers, is then used to train sophisticated
machine-learning (ML) procedures to estimate SARS-CoV-2 infection numbers as a function of Safe
Blues strands. Real time information on Safe Blues strands then provides, via the ML projections, live
near-future estimates of SARS-CoV-2 infection levels.

In the sense that its outcomes are driven by the behaviour of individuals, Safe Blues shares some
characteristics with agent-based simulation.15 Both rely on capturing realistic physical proximity be-
havior of individuals along with virus transmission to make predictions about population outcomes. The
difference between them is that Safe Blues uses a sample from the actual population whereas agent-based
models simulate this. The latter have the advantage that they can be used to explore potential future
scenarios and can incorporate the effect of interventions such as mask-wearing and surface-cleaning.
However, they still rely on assumptions about how agents interact rather than the actual interactions.
Ultimately we believe that policy makers should use a mix of agent-based simulations as in Victoria,8

and virtual safe virus spread solutions, such as Safe Blues, since these tools complement one another.

Measuring and Controlling an Epidemic

Epidemics are largely governed by the average number of individuals infected by each sick individual.
This quantity, usually referred to as the effective reproduction number Reff(t) at time t, measures the
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ebbs and flows of the epidemic in aggregate. For SARS-CoV-2, early estimates indicate that, without
significant control measures in place, Reff(t) lies in the range of 2 − 4.19 Its magnitude depends on a
combination of biological and behavioural factors. Key biological factors include the propensity of the
pathogen to infiltrate human hosts, the duration of the disease in an infected individual, and the sus-
ceptibility of different age groups. Key behavioural factors include personal hygiene practices, cultural
practices around touching such as hand shaking and, importantly, the structure of social networks and
amount of time that individuals spend in close proximity to each other.

The biological factors determining Reff(t) tend to be uncontrollable and, with the exception of
weather effects, may generally be assumed to remain constant over time as long as significant virus
mutation does not occur. The behavioural factors, however, are controllable to some extent. Indeed,
the social distancing measures imposed in over 150 countries during the first few months of 2020, some
of which are outlined in the high-impact report,12 are attempts to control the behavioural component of
Reff(t).13 Retrospectively, it is clear that these measures were essential for slowing down the epidemic,
but it is also clear that their effectiveness decreased over time as people became less cautious and
were unaware of a growing second wave (see Figure 1). Unfortunately, at this early stage, it was
very difficult to quantify in real time the effect that any particular social distancing measure had on
population behavior or network structure, and in turn on the evolution of Reff(t) and the course of the
epidemic.

Some proxies for social proximity are available through anonymized, passively generated mobile
phone data,21 and this data has shown some predictive power for outbreaks of other communicable
diseases.6 However, this type of information lacks high spatial resolution so may require parameter
calibration that depends on epidemiological data that are only available retrospectively.

A lack of near real time information on social proximity is problematic, because all models that aid
policy makers by projecting the course of the epidemic require an estimate of Reff(t). This is often
obtained by modelling that attempts to quantify the level of human-to-human interaction either at
broad scales20,23 or at finer scales.9,12,16 A notable recent effort to obtain such a quantification17 used
survey sampling of the UK population to estimate that in March of 2020 Reff(t) shifted from around 2.6
prior to lockdown, to around 0.62 after lockdown. While impressive, such questionnaire-based surveys
are difficult and expensive to execute, and do not yield real time estimates of Reff(t). Other efforts to
measure Reff(t)18,24 use up-to-date count data such as the now famous dashboard by the CSSE at Johns
Hopkins.10 However, in such cases the problem is that reported “live data” about SARS-CoV-2 is based
only on confirmed tested cases which lags infection events and does not consider the large number of
asymptomatic cases or otherwise untested cases. Better estimates become known only retrospectively,
after the pandemic has progressed.

In a controlled system, lags in a system’s response (in this case, virus transmission) to a control
intervention (such as increased social restrictions) are problematic. They lead to undesirably slow
control updates, which hinder policy makers’ ability to effectively reduce transmission while minimising
wider social and economic disruptions. Safe Blues provides a real time proxy for the virus transmission
response, thereby reducing the lag between social intervention and the epidemiological response.

Virtual Safe Virus Measurement

The key idea of Safe Blues is to obtain real time estimates of gross population engagement dynamics in
a safe and privacy-preserving manner. Safe Blues data can be processed in real time to yield estimates
of the spread of a virus such as SARS-CoV-2. Near-future projections and estimates of the effective
reproductive number Reff(t) can be continuously updated. At the heart of the system is a measurement
framework of auxiliary variables describing the spread of Safe Blues strands which we describe below.

The system works by having personal mobile devices take part in an ongoing safe real time virus
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Figure 2: Individuals of the population with Safe Blues enabled devices take part in spreading Safe
Blues strands. SARS-CoV-2 infected individuals are in red and others are in green, however the Safe
Blue system operates independently of the health status of individuals.

spread “simulation” where, by means of Bluetooth signals, the time that individuals spend in close
proximity is a key driving factor. This is done in a way that does not compromise individual privacy,
does not cause any risk to human health, and does not introduce any risk to individual software or
hardware. See Figure 2 for a schematic illustration of the Safe Blues data collection system.

A Safe Blues strand is a virtual token that circulates and replicates between the mobile devices of
individuals using dynamics designed to reflect the transmission of a biological virus but without any
threat to safety, software, or privacy. Strands differ in their viral properties, such as incubation time
and level of infectiousness. Strands are counted as “active” for a finite duration of time in each mobile
device that is “infected.” During that time, if the mobile device is in close proximity to another device,
there is a chance for the strand to “spread” to the neighbouring device. Similarly, if the mobile device is
in relative isolation, the strand is not likely to spread and the mobile device is unlikely to be “infected”
by Safe Blues strands.

We allow multiple strands to be present on each mobile device. These strands evolve independently
from one another, so in effect we are “simulating” multiple “epidemics,” corresponding to the multiple
strands, at any given time. Unlike with biological epidemics, the number of devices infected by each
strand can be measured in real time.

The Safe Blues system periodically injects strands into the mobile host population and obtains real
time counts of the number of infected hosts for each strand. While the population dynamics of each
strand do not necessarily directly resemble the dynamics of SARS-CoV-2 or any other biological virus,
the epidemics of the strands all respond to social proximity and social distancing measures in a similar
way to a biological virus, because they all experience the same social proximity and social distancing
measures. Hence, we expect the course of strand “epidemics” to be coupled with the course of the
COVID-19 epidemic.
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The mechanism of communication between devices is Bluetooth. This is similar to the communica-
tion protocol used by many emerging contact tracing apps. In the Safe Blues protocol, the probability
of transmission increases as individuals spend time in close proximity. Conversely, as individuals main-
tain a higher level of social distancing, the Safe Blues strands are less likely to spread. Unlike systems
that use contact tracing apps, the Safe Blues system is oblivious to the actual health status of specific
individuals. For example, in Figure 2, some individuals are infected by SARS-CoV-2 (red) while others
are not (green). However, Safe Blues is not aware of, and does not need, this private information.
Similarly, some individuals participate in Safe Blues (as signified by a those holding a mobile device in
the figure) and others do not. Clearly some level of population participation is required, but Safe Blues
does not require all individuals to participate.

Evaluation of Safe Blues via Simulation

For initial evaluation of Safe Blues we created three different simulation models, each of a different
nature. This allows us to test the robustness of the system to different realities. In these simulation
models, we simulate both the biological virus and Safe Blues strands. Full details of the models are in
Appendix C of a prior study.1 We now review the key ideas.

All models feature a population comprising N individuals. Some of these individuals have Safe
Blues-enabled devices, while others do not. At each point in time, the state of an individual registers
whether they are susceptible, infected, or removed with respect to the actual virus. If an individual
has a Safe Blues enabled-device, then the state also registers, for every Safe Blues strand, whether they
are susceptible, infected, or removed. Hence an individual’s simulated device maintains the state of
multiple Safe Blues strands simultaneously.

The three models differ in their complexity and how they capture individual proximity. However,
regardless of the model, individual proximity drives both the (simulated) SARS-CoV-2 spread and the
Safe Blues spread in a coupled manner because both SARS-CoV-2 and Safe Blues strands only spread
when individuals are in close proximity. This roughly approximates what one may expect to happen in
reality. Importantly, all three models allow for time-varying parameters that enforce social distancing,
which in turn affects both SARS-CoV-2 spread and Safe Blues spread by changing how much time
individuals spend in close proximity of each other.

Figure 3 sketches the three models. Model I is a very simple and stylised discrete-time stochastic
model. One of its appealing features is that it converges to the well-known SIR difference equations as
the population size N becomes large, which makes this model well suited as a first test bed. Model II
is a continuous-time stochastic SIR model with migration. It incorporates several social and spatial
features that are ignored in Model I. In particular, Model II has a spatial component (people have to
be in the same place at the same time for virus transmission to occur) as well as a notion of social
levels (people have a home where they meet a selected number of other people, a workplace where they
may meet a larger number of people, et cetera). Model III is a spatial movement model with location
attraction in which individuals move randomly in two-dimensional space. Its distinguishing feature is
that it has a notion of centrality: although individuals move around randomly, they are biased towards
visiting places that are important for them, such as their home and the supermarket. This creates a
form of clustering that is not present in the first two models.

In the simulations that we ran with each model (Figure 4), after an initially rapid spread of the
epidemic, social distancing regulations are increasingly imposed over a period of two weeks and then
fixed to prevent the vast majority of social contact. As these rules go into effect, the infected proportion
begins a slow but steady decline. All the while, Safe Blues strands are being transmitted on mobile
devices. As a consequence, the proportion of Safe Blues infections mirrors the decline in the true
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Model I Model II

Model III

Figure 3: Model I: At every time point, each of the N individuals selects a random number of other
individuals to “invite” and this implies physical proximity. In this case orange and green individuals
make invitations. Model II: All N = 2k individuals traverse a binary tree between their private leaf and
the root. At any node, infection follows a continuous-time stochastic SIR model between the individuals
present. Model III: A spatial model where each individual diffuses either around their base (e.g. home)
or around a center (e.g. supermarket).

infected proportion, driven by a corresponding reduction in physical proximity between Safe Blues-
enabled devices. In all the runs, at around 100 simulated days after the start, and months of a promising
decline in case numbers, the social distancing rules are mostly lifted, resulting in a second wave. The
goal of our numerical experiments is to see whether Safe Blues can provide adequate information to
predict this second wave.

Prediction and Real Time Information with Safe Blues

For performing real time projection from the Safe Blues strand information, we created the Deep Safe
Blues deep neural network model14 from the ensemble of Safe Blues strands and historical SARS-CoV-2
information. The basic setup follows the paradigm presented in Figure 4 where accurate information
of SARS-CoV-2 is available only up to a certain time, say two weeks in the past, after which only Safe
Blues information is available. This lag represents the fact that SARS-CoV-2 information is not present
in real time, in contrast to Safe Blues. The relative magnitude of historic social distancing measures is
also available as input for projections (for example “full lockdown”, “partial lockdown”, etc.).

The projections displayed in Figure 4 demonstrate that Deep Safe Blues is able to accurately detect
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the start of a trend towards a second peak in the number of infected individuals a significant time
before such data is available in all three models. Importantly, the same neural network architecture was
used for all three simulation models, meaning no tuning of architectures is required to achieve these
results. Together, our results yield confidence in the ability of Safe Blues to detect a second wave before
it shows up in the actual data. This can enable public health officials to respond during the essential
early period before infection estimates can be updated.

This analysis demonstrates one of many methods to uncover the predictive power that can be
gained by utilizing Safe Blues information. Contact tracing apps can allow public health investigators
to identify specific individuals who might be infected, but the focus on the population of known infected
individuals means that contact-tracing data on infection proportions is heavily biased relative to the
general population. In contrast, the Safe Blues system is able to determine the status of the entire
population of participating devices whether or not they are infected.

0 50 100 150 200

0.00

0.02

0.04

0.06

0.08

0.10

Day

Pr
op

or
tio

n 
In

fe
ct

ed

Infected
True Unknown Proportion Infected
Predicted Infected: Trained on Current Numbers
Safe Blues Projected Infected
Most Current Infection Statistics

Model I.

0 50 100 150
0.00

0.05

0.10

0.15

0.20

Day

Pr
op

or
tio

n 
In

fe
ct

ed

Infected
True Unknown Proportion Infected
Predicted Infected: Trained on Current Numbers
Safe Blues Projected Infected
Most Current Infection Statistics

Model II.

Model III.

Figure 4: Deep Safe Blues: Safe Blues detection of a second wave applied to data generated from three
different simulation models. The proportion of infected individuals is only known until the vertical
black lines. After that point, only Safe Blues information is available. Nevertheless, Deep Safe Blues
(trained up to the black line) is able to accurately predict a second wave of SARS-CoV-2 infections.
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Feedback to Policy with Safe Blues

In addition to being a tool for estimating the current number of infected individuals before such data is
available, Safe Blues can also help estimate the potential effect of policy decisions. For this we developed
Dynamic Deep Safe Blues which is a tool for projecting Reff(t) as a function of future levels of social
distancing using Universal Ordinary Differential Equations.25 This approach mixes neural networks
into epidemiological models in order to directly learn how policy decisions affect the spread of Safe
Blues and the actual infection. Figure 5 demonstrates data-driven projections of Reff(t) under various
policy levels. Such results can be used as input to decision makers for helping to determine the levels
necessary to contain the outbreak and ensure that exponential growth into a second peak does not
occur. By directly quantifying the effectiveness of interventions over time, this technique can be related
back to historical policy decisions to determine the minimal level of social controls required to achieve
declining cases and thus prevent further disease outbreak.
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Figure 5: Demonstration of policy projection and refinement using Dynamic Deep Safe Blues on
Model III. We project the effect of the social distancing strength on Reff(t0) where t0 is the end of the
training period (right). We also demonstrate potential near-future trajectories as a function of policy
decision (left).

A Campus Experiment for Safe Blues

Following our simulations, we are now in the process of devising a campus-wide experiment of Safe
Blues. We have developed an Android application based on the open source contact tracing OpenTrace
software5 published by the Singaporean government. Our app follows the Safe Blues protocol specified
in Appendix A of a prior study1 with additional implementation details. The app source code is
written in the Kotlin language, and interfaces with a backend service using the gRPC protocol. We
have developed an associated dashboard and control panel to aid in creating new Safe Blues strands
and tracking their spread. The source code for the app, the backend, and the dashboard is available
under the Safe Blues GitHub organisation.2 See Figure 6 for an illustration of the app and the control
panel.

The main purpose of the Safe Blues campus experiment is to test if the Safe Blues system can add
to the predictive power of traditional epidemic modelling forecasting methods. The experiment will be
carried out at The University of Queensland, St Lucia campus. The experiment will source student
participants who will run the Safe Blues app as they attend campus. A randomized reward mechanism
will be used to ensure participants continue to use the app over a prolonged period.
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As participants run the Safe Blues app, they will propagate an ensemble of red strands and an
ensemble of blue strands. Each red strand simulates an epidemic that is to be tracked. With multiple
red strands, the experiment can simultaneously simulate multiple epidemics. The blue strands are Safe
Blues. During the experiment, they are tracked to obtain quantifiable uncertainties of the predictive
power of Safe Blues versus traditional methods.

The Safe Blues predictor will have available real time Safe Blues strand information as well as delayed
red strand measurements. Separately, for each red strand, the Deep Safe Blues method described above
will be used to project the current state of the red epidemic, as well as a 10 day forecast. In parallel,
several state-of-the-art predictive techniques7 will be employed to project infection levels of the red
epidemic using only suitably lagged red strand historical data. The goal of the experiment is to test
whether the projections obtain with the aid of Safe Blues can yield significant improvement in the
accuracy of projections that one would obtain without Safe Blues, only based on lagged red-strand
data.

The experiment will take place in a small campus environment with only a few hundred active
participants, so the parameters of the Safe Blues app will need to be adjusted beforehand. Such
a calibration phase is needed to ensure that both red strands and Safe Blues strands can propagate
efficiently, so that red/blue epidemics are possible. This phase may also involve agent-based simulations
to aid in calibration.

After the calibration phase and during the experiment, social distancing will be simulated by ar-
tificially controlling the infectiousness of the red and blue strands. Such artificial control enables one
to simulate varying degrees of social-distancing measures. The goal is to have a first wave (of red and
blue strands), and then in the second wave, Safe Blues measurements will be employed for prediction.
Further updates about the Safe Blues campus experiment will be posted on the Safe Blues website.3

Figure 6: The control panel, dashboard and Android app - used for the planned campus experiment.
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Outlook

A century of technological innovations passed between the 1918-1920 H1N1 pandemic and the current
COVID-19 pandemic. One can then ask what innovations are helping humanity fight the current pan-
demic that were not available in 1918? In addition to many advances in the understanding of pathogens
and their effect on the human body, some of the innovations used for quantifying and managing the
2020 pandemic include compartmental (SIR type) differential equation epidemic models, agent-based
simulation models, contact-tracing apps, and a variety of data collection and visualization mechanisms.
However, the past few decades have witnessed great advances in computational statistics and machine
learning, and one may ask if tools from these areas have so far been effectively employed in the fight
against COVID-19. We believe that to date, the answer is generally negative due to the lack of available
coherent data associated with the pandemic. It is thus unfortunate that a pandemic hitting humanity
in the midst of the “AI revolution” cannot be controlled using the machine learning tools that are
celebrated in so many other domains.

The value proposition of methods such as Safe Blues is to empower modellers and policy makers
to utilize computational statistics and machine learning effectively. Our method allows one to collect
additional real time information at scale. Indeed, large quantities of data are often needed for effective
application of deep learning and related methods. Safe Blues aims to provide policy makers and mod-
ellers with ample information that informs better decision making. To the best of our knowledge this
type of framework is fundamentally different from existing solutions and other suggestions that have
appeared in the literature.22

Based on simulation experiments, the machine learning principles and analysis that we use appear
to be robust enough to yield immediate value from collected Safe Blues signals. The next step is to
collect results using our experimental App in a campus level experiment.

A further critical attribute of any such system is privacy. The Safe Blues system is highly privacy-
preserving relative to many other apps that aim to fight the COVID-19 epidemic. No individual
interaction information or any other private information is shared between devices or between a device
and the server. This is achieved by not associating long-term identifiers with users or devices, nor
collecting any information about the users themselves. The devices do not share anything other than
the strands with which they are currently infected.

This is in contrast to contact-tracing apps that raise more serious concerns about personal privacy,
even when engineered using novel privacy-protecting methods. Fundamentally, this is because the goal of
any contact-tracing app is to observe relationships between individual people through their interactions,
whereas the goal of Safe Blues is to collect only aggregate simulated epidemic signals. Thus a proper
implementation of Safe Blues can provide stronger privacy guarantees than apps attempting to mitigate
SARS-CoV-2 through contact-tracing methods.5,26

Nonetheless, there are some issues that need to be addressed. For example, the case of an adversary
choosing a rare strand and infecting a user with that strand to track them is averted by making sure
that the seeding probability of each strand is sufficiently large to make strands common, making them
meaningless for trying to identify an individual. Still, tracking might be possible using combinations of
strands. Addressing such concerns remains a goal for future research.

An idea we have not yet pursued is to take the Safe Blues idea further, and consider gamification.
For example, in a second or third generation of the app, one might consider presenting users with an
up-to-date count of the strands of Safe Blues infecting their device. This information may help users
to get a feel for the level of social distancing that they are practising and to stay socially responsible
as advised by government. One might even use randomized rewards to further incentivize users to
maintain social distancing.
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